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Abstract—In this paper, we propose a novel concept of region-
of-unpredictable (ROU) to accelerate full-frame feature gener-
ation in video sequences. Due to the high correlation between
successive frames, there are only few regions in which the features
could not be estimated accurately from the previous frame called
region-of-unpredictable (ROU). We develop a scheme combining
partial feature extraction in ROU with feature prediction from
the previous frame. The full-frame features of the current frame
can then be obtained to minimize information loss. Experimental
results show that the ROU determination algorithm supports
95.71% detection rate. The full-frame feature generation scheme
using ROU determination saves 79.38% computational time
compared with the full-frame feature extraction.

Index Terms—Region-of-unpredictable (ROU), video feature
extraction, partial feature extraction, motion vectors, global
motion estimation

I. INTRODUCTION

Feature generation from a video is important for solving
many computer vision tasks like object detection, recognition
and tracking. They have variety applications ranging from ac-
tivity recognition, automated surveillance, vehicle navigation,
robot vision, and marker-less augmented reality. The progress
of the high resolution video capture device, the wireless
internet and the computation of cloud make the applications
more and more real. In order to give the user a smooth
update of object information, or to recognize new object has
just appeared for immediately robot reacting, a fast feature
generation algorithm is strongly demanded.

The good invariant properties of local feature make it possi-
ble to recognize objects in different scale, light condition and
even occluded situation. However the computation of feature
generation from a video increases significantly compared to
from an image. In order to achieve real-time performance,
two strategies are proposed in the previous work. One is to
perform partial feature extraction only in the region-of-interest
(ROI) instead of full-frame [1][2][3]. The computational effort
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is reduced by decreasing the area performed feature extraction.
However information outside the ROIs is ignored. The other
one is to reduce the feature information, like Bag-of-Word
(BoW) [4] and CHoG [5]. The information of the features is
concentrated to a histogram, and thus feature dimensionality
is decreased significantly. These methods can work well in
the mobile phone searching scenario, in which users need to
input an image only containing the query object. It may not
work when the input image containing many objects in clutter
background like marker-less augmented reality scenario.

In this paper we propose a novel concept of region-of-
unpredictable (ROU). Strong temporal correlation between
successive frames in video sequences has been successfully
exploited in standard video compression algorithms [6]. The
high correlation between successive frames should be used to
accelerate feature generation in video sequences. Since there is
little difference between two successive frames, a majority of
the features in the current frame could be predicted correctly
from features in the previous frame. Feature extraction is
only needed to perform partially in regions with new content
and can not be predicted. Combining with features predicted
from previous frame, the full-frame features in current frame
can be obtained while computational effort can be reduced
significantly.

The remainder of this paper is organized as follows. In
the following section, we introduce the proposed accelerated
full-frame feature generation scheme. Section III shows our
experiment results and analysis. We conclude with discussion
in Section IV.

II. ACCELERATED FULL-FRAME FEATURE GENERATION

Our full-frame feature generation scheme is motivated by
the fact that most features in current frame can be predicted
from the features in the previous frame. The overall block
diagram of the scheme is shown in Fig. 1. The motion
vectors directly obtained from video encoder and the features
from the previous frame are the input. ROU determination
algorithm includes two steps, reliable motion vector selection
and frame alignment. After ROU determination the global
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Fig. 1. Proposed accelerate full-frame feature generation scheme: (a) result of reliable motion vector selection, (b) result of frame alignment, (c) result of
ROU determination, and (d) output of full-frame feature generation.

motion model and ROU are obtained. Feature generation is
performed including partial feature extraction in ROU and
feature prediction by the global motion model. Full-frame
features in the current frame are obtained as output. The details
of each step are described below.

A. Analysis of Motion Vectors

In this work, the motion vectors between each pair of
successive frames are considered as input directly obtained
from the encoder. The challenges of using motion vectors are
discussed [7]. First, motion vectors point backwards in time to
macroblocks in previous frames, while the feature points to be
tracked are known in the previous frame and must be propa-
gated forward in time. A reverse map is then needed to check
the reverse motion vectors from location in previous frames.
Second, motion vectors from video encoder are optimized for
compression using a rate-distortion Lagrangian metric and do
not represent true motion. However work by Takacs et al.
[7] have shown that features still can be tracked with a high
level of accuracy even though the motion vectors are highly
rate-distortion optimized. Third, not all pixels have motion
vectors associated with them. For example, the macroblocks
intra-coded or the B frames used future frames as reference
frames do not have motion vectors from previous frames. Since
standardized video encoders are widely implemented in video
capture devices and the state-of-the-art video software encoder
supports resolutions up to 7680x4320 and frame rates up to
120 fps [8], it is reasonable to assume that the motion vectors
from the previous frames can be produced by the dedicated
hardware with little additional computation.

Fig. 2 (a) shows a frame from video sequence Pan-Left
overlaid with 16x16 macroblock motion vectors. Some motion
vectors are estimated incorrectly because of the aperture
problem or the new content. The aperture problem shows that
if an image has oriented structure, then only the component of
motion that is perpendicular to this oriented structure can be
measured. Thus the motion vectors of blocks in flat or edge
regions are not reliable. For example, the motion vectors in
the regions of sky and building with parallel lines are often

estimated incorrectly. The regions with new content do not
exist in previous frames, therefore the motion vectors are
meaningless for feature tracking. The motion vectors include
global motion vectors and local motion vectors. The former
results from motion of a camera and the latter results from
displacements of individual objects composing the scene, such
as the car moving left. The goal is to select global motion
vectors estimated correctly to build global motion model. The
analysis of motion vectors is organized as Fig. 2 (b).

B. Reliable Motion Vector Selection

Instead of to random sample motion vectors, the location
of the features in previous frames are treated as reference for
reliable motion vector selection. The regions within feature
scales are mostly textured, since low contrast points and

Fig. 2. Example of motion vectors: (a) the current frame overlaid with 16x16
macroblock motion vectors, and (b) the analysis of motion vectors.

435



edge response points along an edge were screened out by
the constraint of feature extraction algorithm [9]. The motion
vector estimation is performed with one motion vector per
macroblock. More than one motion vectors may be estimated
within a feature scale and the consistency of those is checked
to select reliable motion vectors. Fig. 1 (a) shows an example
result of reliable motion vector selection. All circles indicate
the regions within feature scales in the previous frame and
red circles indicate the regions within feature scales in which
reliable motion vectors detected. The reliable motion vectors
are indicated by green arrows.

There are some examples of the motion vector selection
illustrated in Fig. 3. Partial previous frame and current frame
are shown in the left column and right column respectively.
In each previous frame, red circles indicate the region within
feature scale. There are five boxes represent five macroblocks
locate at the central and four corners within the feature
scale. In each current frame, the boxes with the same color
corresponding to the previous frame indicate the macroblocks
transformed by the motion vectors. Fig. 3 (a) shows two
examples without consistent motion vectors. The first row
shows that the motion vector in edge regions are not reliable
because of the aperture problem. The second row shows the
new content or the occluded region would not have consistent
motion vectors. Fig. 3 (b) shows two examples with consistent
motion vectors which are estimated correctly and reliable.
However it is observed that the consistency motion vectors
may results from global motion and local motion.

C. Frame Alignment

Under the presupposition that motion vectors result from
global motion are majority, RANSAC(RANdom Sample Con-
sensus) algorithm [10] is adopted to select global motion
vectors and build the global motion model. The idea is to
repeatedly guess parameters of the global motion model using
small subsets of motion vectors that are drawn randomly from
the input reliable motion vector set. With a large number of
draws, there is a high probability to draw a subset of motion
vectors that are part of the same model. After each subset draw,
the model parameters for this subset are determined and the
number of correspondences in that are consistent with these
parameters is counted. The set of model parameters with the
largest support is considered to be the correct parameters of
the global motion transformation matrix H.

We then apply image warping by the global motion trans-
formation matrix H on the previous frame. The previous frame
is warped with the spatial transform to gain the frame aligning
with the current frame. Fig. 1 (b) shows an example of frame
alignment. The current frame is bounded by red box while the
previous frame warped is bounded by green box. The differ-
ence between the previous frame warped and the current frame
is the reference of ROU determination, the larger difference
the more unpredictable. ROU is finally determined in a fixed
area ratio to make computation apportioned equally in each
frame. Fig. 1 (c) shows the result of ROU determination and
ROU is indicated by red color.

Fig. 3. Example of motion vectors: (a) motion vectors without consistence,
and (b) motion vectors with consistence.

D. Full-frame Feature Generation

Full-frame features generation is achieved by feature pre-
diction and partial feature extraction. The features from the
previous frame are transformed by H. If the features trans-
formed are not located in ROU, they are remained as the
features in current frame. Feature extraction is only applied
in ROU. Since the hardware feature extraction is usually
implemented by tile based architecture, the computational time
of partial feature extraction can be considered proportional to
the ratio of ROU. Full-frame features in current frame are
then obtained by combining the transformed features from the
previous frame and the new extracted features in ROU. Fig.
1 (d) shows an example result. The red circles indicates the
transformed features, while the green circles indicates the new
features generated by partial feature extraction. Comparing
with the features in the previous frame shown in Fig. 1 (a),
it is observed that the features transformed are located at the
proper location and the new features are extracted from the
new content.

III. EXPERIMENTS

We consider six sequences with global camera motions
including Pan-Left, Pan-Right, Tilt-Up, Tilt-Down, Zoom-
In and Zoom-Out. All the video sequences were collected
from the famous video-sharing website Youtube [11]. These
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sequence are real-world video captured as travel souvenir, thus
global motions and local motions both exist in the sequence.

The primary objective of ROU determination is to extract
the regions in which the features can not be estimated correctly
from the previous frame. The feature extraction is only needed
to apply in ROU instead of in whole frame. To generate the
ground truth data we perform feature extraction on every frame
at first. Feature matching is then carried out between each pair
of successive frames. The regions with solitary features are
considered as ground truth of ROU.

Precision is the fraction of extracted region that is unpre-
dictable, while recall is the fraction of unpredictable region
that is extracted. For hardware design friendly, the ROU deter-
mination algorithm extract a fixed ratio of ROU to apportion
computation equally in each frame. Hence, precision is not
important in our experiments.

After computing the ground truth of ROU, we take recall
as the detection rate to evaluate our ROU determination
algorithm. Recall is defined as the area of ROU detected
correctly by our algorithm divided by the area of ROU ground
truth. In Fig. 4 we first compare the recall versus ROU ratio
for each video sequence. It is noticeable that only extract 20%
area ratio can achieve over 95% recall in average. In other
words, feature extraction is only applied in 20% area and over
95% unpredictable features can be detected.

All experiments were performed in MATLAB. Detection
rate and computational time are compared in Table I. ROU ra-
tio 100% means applying full-frame feature extraction, hence
there is no computational time needed for ROU determination.
Experiment results show that the ROU determination algo-
rithm proposed achieves 95.71% detection rate and only needs
0.0197 sec. Since the computational effort is relatively small,
the total time is mainly determined by feature extraction. There
is a trade-off between detected rate and saved time under
which vary with ROU ratio. The full-frame feature generation
scheme using 20% ROU determination saves 79.38% compu-
tational time compared with the full-frame feature extraction.

Fig. 4. Recall versus ROU ratio for each video sequence.

IV. CONCLUSION

In this work we propose a novel concept of partial feature
extraction in Region-of-Unpredictable (ROU), which makes
best use of the high correlation between successive frames.

TABLE I
DETECTION RATE AND COMPUTATIONAL TIME

ROU Detection Saved Computational Times (sec)
Ratio Rate Time ROU Feature
(%) (%) (%) Determination Extraction
100 100 0 0 3.2013
20 95.72 79.38 0.0197 0.643

It is also friendly to hardware design due to the compu-
tation apportioned equally in each frame. Besides, we also
develop a robust and fast ROU determination algorithm using
both motion vectors obtained from video encoder and the
features in the previous frame. Experiment results show that
the algorithm proposed achieves 95.71% detection rate with
little computational effort. The accelerated full-frame feature
generation scheme based on ROU determination is accelerated
significantly and saves 79.38% computation time compared
with the full-frame feature extraction.[12][13]
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